Capillary Characteristics in Microfluidic Experiments and Computational Simulation
نویسندگان
چکیده
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Abstract Angiogenesis is crucial during many physiological processes, and is influenced by various biochemical and biomechanical factors. Models have proven useful in understanding the mechanisms of angiogenesis and the characteristics of the capillaries formed as part of the process. We have developed a 3D hybrid, agent-field model where individual cells are modeled as sprout-forming agents in a matrix field. Cell independence, cell-cell communication and stochastic cell response are integral parts of the model. The model simulations incorporate probabilities of an individual cell to transition into one of four states-quiescence, proliferation, migration and apoptosis. We demonstrate that several features such as continuous sprouts, cell clustering and branching that are observed in microfluidic experiments conducted under controlled conditions using few angiogenic factors can be reproduced by this model. We also identify the transition probabilities that result in specific sprout characteristics such as the length and number of continuous sprouts. We have used microfluidics to study cell migration and capillary morphogenesis. The experiments were conducted under different concentrations of VEGF and Ang I. We demonstrated that capillaries with distinct characteristics can be grown under different media conditions and that characteristics can be altered by changing these conditions. A two-channel microfluidic device fabricated in PDMS was used for all experiments. The rationale underlying the design of the experiments was twofold: the first goal was to generate reproducible and physiologically relevant results in a microfluidic device, and the second goal was to quantify the capillary characteristics and use them to estimate the transition parameters of the model. We developed stable, well-maintained sprouts by using human microvascular endothelial cells in 2.5 mg/ml dense collagen I gel and by using media supplemented with 40 ng/ml VEGF and 500 ng/ml Ang 1 for two days. It has been shown in many studies that VEGF acts as an angiogenic factor and Ang 1 acts as stabilizing factor. Here we showed that their roles are maintained in the 3D microenvironment, and the sprout characteristics obtained by using this baseline condition could be altered by changing the concentrations of these two growth factors in a systematic way. Sprout and cell characteristics obtained in the experiments and simulations were analyzed by adapting Decision Tree Analysis. This methodology provides …
منابع مشابه
Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملModeling and Simulation of Capillary Microfluidic Networks Based on Electrical Analogies
In this study we implemented the network simulation techniques using macromodels (lumped models) for capillary driven flows in microfluidic networks. The flow characteristics in a flow junction, such as meniscus stretching and bifurcation, were studied and their effects on filling time as well as pressure drop were explored for various network configurations. The results from the network simula...
متن کاملCapillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium
The evaluation of a free fluid surface in a porous medium has several mathematical applications that are important in industries using molds, particularly in the fluid injection process. The vacuum-assisted resin transfer molding (VARTM) process is a promising technology in the primary composite industry. An accurate computational simulation of the VARTM process would be a cost-effective tool i...
متن کاملEvaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation
In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...
متن کاملOn-demand Control of Microfluidic Flow via Solenoid Microvalve Suction
A simple, low-cost and on-demand microfluidic controlling platform was developed based on a capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was employed as a stable driving force for manipulating micro-fluid by connecting a piece of capillary tubing between the microvalve and the chip. The suction volume could be controlled from microlite...
متن کامل